医药卫生科技论文参考文献式举例「写作必知」

论文价格:免费 论文用途: 编辑:硕博论文网 点击次数:
论文字数:5000 论文编号:sb2024082110540952678 日期:2024-08-21 来源:硕博论文网
医药卫生科技论文参考文献格式举例怎么写?临近毕业季,大家都在为自己的论文答辩时刻准备着,想要顺利通过,认真、严谨是必备的态度。对于论文文献格式,很多同学不知如何写,本文为大家提供了200个医药卫生科技论文参考文献格式案例,大家可以参考一下。
[1] Wu E, Wu K, Daneshjou R, et al. How medical AI devices are evaluated: 
limitations and recommendations from an analysis of FDA approvals[J]. Nature 
Medicine, 2021, 27(4): 582-584.
[2] Ciresan D, Giusti A, Gambardella L, et al. Deep neural networks segment neuronal 
membranes in electron microscopy images[J]. Advances in neural information 
processing systems, 2012, 25.
[3] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic 
segmentation[C]//Proceedings of the IEEE conference on computer vision and 
pattern recognition. 2015: 3431-3440.
[4] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical 
image segmentation[C]//Medical Image Computing and Computer-Assisted 
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 
October 5-9, 2015, Proceedings, Part III 18. Springer International Publishing, 
2015: 234-241.
[5] Huang Q, Sun J, Ding H, et al. Robust liver vessel extraction using 3D U-Net with 
variant dice loss function[J]. Computers in biology and medicine, 2018, 101: 153-
162.
[6] Yu W, Fang B, Liu Y, et al. Liver vessels segmentation based on 3d residual UNET[C]//2019 IEEE international conference on image processing (ICIP). IEEE, 
2019: 250-254.
[7] 殷晓航, 王永才, 李德英. 基于 U-Net 结构改进的医学影像分割技术综述
[J]. 软件学报, 2020, 32(2): 519-550.
[8] Zhou Z, Rahman Siddiquee M M, Tajbakhsh N, et al. Unet++: A nested u-net 
architecture for medical image segmentation[C]//Deep Learning in Medical Image 
Analysis and Multimodal Learning for Clinical Decision Support: 4th International 
Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in 
Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, 
Proceedings 4. Springer International Publishing, 2018: 3-11.
[9] Zhang Z, Fu H, Dai H, et al. Et-net: A generic edge-attention guidance network for 
medical image segmentation[C]//Medical Image Computing and Computer 
Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, 
China, October 13–17, 2019, Proceedings, Part I 22. Springer International 
Publishing, 2019: 442-450.
[10]Chen W, Liu B, Peng S, et al. S3D-UNet: separable 3D U-Net for brain tumor 
segmentation[C]//Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic 
Brain Injuries: 4th International Workshop, BrainLes 2018, Held in Conjunction 
with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers, 
Part II 4. Springer International Publishing, 2019: 358-368.
[11]Zhang Z, Wu C, Coleman S, et al. DENSE-INception U-net for medical image 
segmentation[J]. Computer methods and programs in biomedicine, 2020, 192: 
105395.
[12]Ibtehaz N, Rahman M S. MultiResUNet: Rethinking the U-Net architecture for 
multimodal biomedical image segmentation[J]. Neural networks, 2020, 121: 74-87.
[13]Liu H, Shen X, Shang F, et al. CU-Net: Cascaded U-Net with loss weighted 
sampling for brain tumor segmentation[C]//Multimodal Brain Image Analysis and 
Mathematical Foundations of Computational Anatomy: 4th International 
Workshop, MBIA 2019, and 7th International Workshop, MFCA 2019, Held in 
Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings 
4. Springer International Publishing, 2019: 102-111.
[14]Baldeon-Calisto M, Lai-Yuen S K. AdaResU-Net: Multiobjective adaptive 
convolutional neural network for medical image segmentation[J]. Neurocomputing, 
2020, 392: 325-340.
[15]Abraham N, Khan N M. A novel focal tversky loss function with improved 
attention u-net for lesion segmentation[C]//2019 IEEE 16th international 
symposium on biomedical imaging (ISBI 2019). IEEE, 2019: 683-687.
[16]Zhao H, Sun N. Improved U-net model for nerve segmentation[C]//Image and 
Graphics: 9th International Conference, ICIG 2017, Shanghai, China, September 
13-15, 2017, Revised Selected Papers, Part II 9. Springer International Publishing, 
2017: 496-504.
[17]Zhang Q, Cui Z, Niu X, et al. Image segmentation with pyramid dilated 
convolution based on ResNet and U-Net[C]//Neural Information Processing: 24th 
International Conference, ICONIP 2017, Guangzhou, China, November 14-18, 
2017, Proceedings, Part II 24. Springer International Publishing, 2017: 364-372.
[18]Frid-Adar M, Ben-Cohen A, Amer R, et al. Improving the segmentation of 
anatomical structures in chest radiographs using u-net with an imagenet pre-trained 
encoder[C]//Image Analysis for Moving Organ, Breast, and Thoracic Images: 
Third International Workshop, RAMBO 2018, Fourth International Workshop, BIA 
2018, and First International Workshop, TIA 2018, Held in Conjunction with 
MICCAI 2018, Granada, Spain, September 16 and 20, 2018, Proceedings 3. 
Springer International Publishing, 2018: 159-168.
[19]Waiker D, Baghel P D, Varma K R, et al. Effective semantic segmentation of lung 
x-ray images using u-net architecture[C]//2020 Fourth International Conference on 
Computing Methodologies and Communication (ICCMC). IEEE, 2020: 603-607.
[20]Orlando J I, Seeböck P, Bogunović H, et al. U2-net: A bayesian u-net model with 
epistemic uncertainty feedback for photoreceptor layer segmentation in 
pathological oct scans[C]//2019 IEEE 16th International Symposium on 
Biomedical Imaging (ISBI 2019). IEEE, 2019: 1441-1445.
[21]Asgari R, Waldstein S, Schlanitz F, et al. U-Net with spatial pyramid pooling for 
drusen segmentation in optical coherence tomography[C]//Ophthalmic Medical 
Image Analysis: 6th International Workshop, OMIA 2019, Held in Conjunction 
with MICCAI 2019, Shenzhen, China, October 17, Proceedings 6. Springer 
International Publishing, 2019: 77-85.
[22]Zhong Z, Kim Y, Zhou L, et al. 3D fully convolutional networks for cosegmentation of tumors on PET-CT images[C]//2018 IEEE 15th International 
Symposium on Biomedical Imaging (ISBI 2018). IEEE, 2018: 228-231.
[23]Wang H, Wang Z, Wang J, et al. ICA-Unet: An improved U-net network for brown 
adipose tissue segmentation[J]. Journal of Innovative Optical Health Sciences, 
2022, 15(03): 2250018.
[24]Otsu N. A threshold selection method from gray-level histograms[J]. IEEE 
transactions on systems, man, and cybernetics, 1979, 9(1): 62-66.
[25]Nock R, Nielsen F. Statistical region merging[J]. IEEE Transactions on pattern 
analysis and machine intelligence, 2004, 26(11): 1452-1458.
[26]Dhanachandra N, Manglem K, Chanu Y J. Image segmentation using K-means 
clustering algorithm and subtractive clustering algorithm[J]. Procedia Computer 
Science, 2015, 54: 764-771.
[27]Najman L, Schmitt M. Watershed of a continuous function[J]. Signal Processing, 
1994, 38(1): 99-112.
[28]Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models[J]. International 
journal of computer vision, 1988, 1(4): 321-331.
[29]Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph 
cuts[J]. IEEE Transactions on pattern analysis and machine intelligence, 2001, 
23(11): 1222-1239.
[30]Plath N, Toussaint M, Nakajima S. Multi-class image segmentation using 
conditional random fields and global classification[C]//Proceedings of the 26th 
annual international conference on machine learning. 2009: 817-824.
[31]Starck J L, Elad M, Donoho D L. Image decomposition via the combination of 
sparse representations and a variational approach[J]. IEEE transactions on image 
processing, 2005, 14(10): 1570-1582.
[32]Minaee S, Wang Y. An ADMM approach to masked signal decomposition using 
subspace representation[J]. IEEE Transactions on Image Processing, 2019, 28(7): 
3192-3204.
[33]Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings 
of the IEEE conference on computer vision and pattern recognition. 2015: 1-9.
[34]He K, Zhang X, Ren S, et al. Deep residual learning for image 
recognition[C]//Proceedings of the IEEE conference on computer vision and 
pattern recognition. 2016: 770-778.
[35]Gibson E, Giganti F, Hu Y, et al. Towards image-guided pancreas and biliary 
endoscopy: automatic multi-organ segmentation on abdominal CT with dense 
dilated networks[C]//Medical Image Computing and Computer Assisted 
Intervention− MICCAI 2017: 20th International Conference, Quebec City, QC, 
Canada, September 11-13, 2017, Proceedings, Part I 20. Springer International 
Publishing, 2017: 728-736.
[36]Zhou X, Takayama R, Wang S, et al. Deep learning of the sectional appearances 
of 3D CT images for anatomical structure segmentation based on an FCN voting 
method[J]. Medical physics, 2017, 44(10): 5221-5233.
[37]Hu P, Wu F, Peng J, et al. Automatic abdominal multi-organ segmentation using 
deep convolutional neural network and time-implicit level sets[J]. International 
journal of computer assisted radiology and surgery, 2017, 12: 399-411.
[38]蔡林沁, 易文渊, 黄宇婷, 等. 面向脑胶质瘤影像分析的混合现实技术[J]. 
软件学报, 2022, 33(9): 3347-3369.
[39]Christ P F, Elshaer M E A, Ettlinger F, et al. Automatic liver and lesion 
segmentation in CT using cascaded fully convolutional neural networks and 3D 
conditional random fields[C]//Medical Image Computing and Computer-Assisted 
Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, 
October 17-21, 2016, Proceedings, Part II 19. Springer International Publishing, 
2016: 415-423.
[40]Kamnitsas K, Ledig C, Newcombe V F J, et al. Efficient multi-scale 3D CNN with 
fully connected CRF for accurate brain lesion segmentation[J]. Medical image 
analysis, 2017, 36: 61-78.
[41]Zhang H, Kyaw Z, Yu J, et al. Ppr-fcn: Weakly supervised visual relation detection 
via parallel pairwise r-fcn[C]//Proceedings of the IEEE international conference on 
computer vision. 2017: 4233-4241.
[42]Wang J, MacKenzie J D, Ramachandran R, et al. A deep learning approach for 
semantic segmentation in histology tissue images[C]//Medical Image Computing 
and Computer-Assisted Intervention–MICCAI 2016: 19th International 
Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19. 
Springer International Publishing, 2016: 176-184.
[43]Yu L, Chen H, Dou Q, et al. Automated melanoma recognition in dermoscopy 
images via very deep residual networks[J]. IEEE transactions on medical imaging, 
2016, 36(4): 994-1004.
[44]Zeng G, Zheng G. Multi-stream 3D FCN with multi-scale deep supervision for 
multi-modality isointense infant brain MR image segmentation[C]//2018 IEEE 
15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, 2018: 
136-140.
[45]Zhang W, Li R, Deng H, et al. Deep convolutional neural networks for multimodality isointense infant brain image segmentation[J]. NeuroImage, 2015, 108: 
214-224.
[46]Liu L, Cheng J, Quan Q, et al. A survey on U-shaped networks in medical image 
segmentations[J]. Neurocomputing, 2020, 409: 244-258.
[47]Li C, Tan Y, Chen W, et al. ANU-Net: Attention-based nested U-Net to exploit full 
resolution features for medical image segmentation[J]. Computers & Graphics, 
2020, 90: 11-20.
[48]Jha D, Riegler M A, Johansen D, et al. Doubleu-net: A deep convolutional neural 
network for medical image segmentation[C]//2020 IEEE 33rd International 
symposium on computer-based medical systems (CBMS). IEEE, 2020: 558-564.
[49]Li J, Chen C, Wang L. Fusion algorithm of multi-spectral images based on dualtree complex wavelet transform and frequency-domain U-Net[J]. Journal of 
Biomedical Engineering Research, 2020, 39(2): 145-150.
[50]Zhang T, Kang B, Meng X, et al. U-Net based intracranial hemorrhage 
recognition[J]. Journal of Beijing University of Posts and Telecommunications, 
2020, 43(3): 92.
[51]Yang Y, Feng C, Wang R. Automatic segmentation model combining U-Net and 
level set method for medical images[J]. Expert Systems with Applications, 2020, 
153: 113419.
[52]Zhang H, Zhu H, Ling X. Polar coordinate sampling-based segmentation of 
overlapping cervical cells using attention U-Net and random walk[J]. 
Neurocomputing, 2020, 383: 212-223.
[53]Liu Z, Song Y Q, Sheng V S, et al. Liver CT sequence segmentation based with 
improved U-Net and graph cut[J]. Expert Systems with Applications, 2019, 126: 
54-63.
[54]Man Y, Huang Y, Feng J, et al. Deep Q learning driven CT pancreas segmentation 
with geometry-aware U-Net[J]. IEEE transactions on medical imaging, 2019, 38(8): 
1971-1980.
[55]Milletari F, Navab N, Ahmadi S A. V-net: Fully convolutional neural networks for 
volumetric medical image segmentation[C]//2016 fourth international conference 
on 3D vision (3DV). Ieee, 2016: 565-571.
[56]Çiçek Ö, Abdulkadir A, Lienkamp S S, et al. 3D U-Net: learning dense volumetric 
segmentation from sparse annotation[C]//Medical Image Computing and 
Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, 
Athens, Greece, October 17-21, 2016, Proceedings, Part II 19. Springer 
International Publishing, 2016: 424-432.
[57]Kleesiek J, Urban G, Hubert A, et al. Deep MRI brain extraction: A 3D 
convolutional neural network for skull stripping[J]. NeuroImage, 2016, 129: 460-
469.
[58]Xie S, Tu Z. Holistically-nested edge detection[C]//Proceedings of the IEEE 
international conference on computer vision. 2015: 1395-1403.
[59]Zeng G, Yang X, Li J, et al. 3D U-net with multi-level deep supervision: fully 
automatic segmentation of proximal femur in 3D MR images[C]//Machine 
Learning in Medical Imaging: 8th International Workshop, MLMI 2017, Held in 
Conjunction with MICCAI 2017, Quebec City, QC, Canada, September 10, 2017, 
Proceedings 8. Springer International Publishing, 2017: 274-282.
[60]Li X, Chen H, Qi X, et al. H-DenseUNet: hybrid densely connected UNet for liver 
and tumor segmentation from CT volumes[J]. IEEE transactions on medical 
imaging, 2018, 37(12): 2663-2674.
[61]Huang H, Lin L, Tong R, et al. Unet 3+: A full-scale connected unet for medical 
image segmentation[C]//ICASSP 2020-2020 IEEE international conference on 
acoustics, speech and signal processing (ICASSP). IEEE, 2020: 1055-1059.
[62]Xiang T, Zhang C, Liu D, et al. BiO-Net: learning recurrent bi-directional 
connections for encoder-decoder architecture[C]//Medical Image Computing and 
Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, 
Lima, Peru, October 4–8, 2020, Proceedings, Part I 23. Springer International 
Publishing, 2020: 74-84.
[63]Oktay O, Schlemper J, Folgoc L L, et al. Attention u-net: Learning where to look [63]Oktay O, Schlemper J, Folgoc L L, et al. Attention u-net: Learning where to look 
for the pancreas[J]. arXiv preprint arXiv:1804.03999, 2018.
[64]Jin Q, Meng Z, Sun C, et al. RA-UNet: A hybrid deep attention-aware network to 
extract liver and tumor in CT scans[J]. Frontiers in Bioengineering and 
Biotechnology, 2020, 8: 605132.
[65]Li C, Tan Y, Chen W, et al. Attention unet++: A nested attention-aware u-net for 
liver ct image segmentation[C]//2020 IEEE international conference on image 
processing (ICIP). IEEE, 2020: 345-349.
[66]毕秀丽, 陆猛, 肖斌, 等. 基于双解码 U 型卷积神经网络的胰腺分割[J]. 
软件学报, 2022, 33(5): 1947-1958.
[67]Li H, Fang J, Liu S, et al. Cr-unet: A composite network for ovary and follicle 
segmentation in ultrasound images[J]. IEEE journal of biomedical and health 
informatics, 2019, 24(4): 974-983.
[68]Lachinov D, Seeböck P, Mai J, et al. Projective skip-connections for segmentation 
along a subset of dimensions in retinal OCT[C]//Medical Image Computing and 
Computer Assisted Intervention–MICCAI 2021: 24th International Conference, 
Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24. 
Springer International Publishing, 2021: 431-441.
[69]Azad R, Asadi-Aghbolaghi M, Fathy M, et al. Bi-directional ConvLSTM U-Net 
with densley connected convolutions[C]//Proceedings of the IEEE/CVF 
international conference on computer vision workshops. 2019: 0-0.
[70]Drozdzal M, Vorontsov E, Chartrand G, et al. The importance of skip connections 
in biomedical image segmentation[C]//International Workshop on Deep Learning 
in Medical Image Analysis, International Workshop on Large-Scale Annotation of 
Biomedical Data and Expert Label Synthesis. Springer, Cham, 2016: 179-187.
[71]Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for 
computer vision[C]//Proceedings of the IEEE conference on computer vision and 
pattern recognition. 2016: 2818-2826.
[72]Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional 
networks[C]//Proceedings of the IEEE conference on computer vision and pattern 
recognition. 2017: 4700-4708.
[73]Karaali A, Dahyot R, Sexton D J. DR-VNet: retinal vessel segmentation via dense 
residual UNet[C]//International Conference on Pattern Recognition and Artificial 
Intelligence. Cham: Springer International Publishing, 2022: 198-210.
[74]Hai J, Qiao K, Chen J, et al. Fully convolutional densenet with multiscale context 
for automated breast tumor segmentation[J]. Journal of healthcare engineering, 
2019, 2019.
[75]Wang W, Chen C, Ding M, et al. Transbts: Multimodal brain tumor segmentation 
using transformer[C]//Medical Image Computing and Computer Assisted 
Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, 
September 27–October 1, 2021, Proceedings, Part I 24. Springer International 
Publishing, 2021: 109-119.
[76]Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: 
Transformers for image recognition at scale[J]. arXiv preprint arXiv:2010.11929, 
2020.
[77]Chen J, Lu Y, Yu Q, et al. Transunet: Transformers make strong encoders for 
medical image segmentation[J]. arXiv preprint arXiv:2102.04306, 2021.
[78]Hatamizadeh A, Tang Y, Nath V, et al. Unetr: Transformers for 3d medical image 
segmentation[C]//Proceedings of the IEEE/CVF winter conference on applications 
of computer vision. 2022: 574-584.
[79]Wang H, Xie S, Lin L, et al. Mixed transformer u-net for medical image 
segmentation[C]//ICASSP 2022-2022 IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP). IEEE, 2022: 2390-2394.
[80]Azad R, Heidari M, Wu Y, et al. Contextual attention network: Transformer meets 
u-net[C]//International Workshop on Machine Learning in Medical Imaging. Cham: 
Springer Nature Switzerland, 2022: 377-386.
[81]Wang H, Cao P, Wang J, et al. Uctransnet: rethinking the skip connections in u-net 
from a channel-wise perspective with transformer[C]//Proceedings of the AAAI 
conference on artificial intelligence. 2022, 36(3): 2441-2449.
[82]Cao H, Wang Y, Chen J, et al. Swin-unet: Unet-like pure transformer for medical 
image segmentation[C]//European conference on computer vision. Cham: Springer 
Nature Switzerland, 2022: 205-218.
[83]Huang X, Deng Z, Li D, et al. Missformer: An effective transformer for 2d medical 
image segmentation[J]. IEEE Transactions on Medical Imaging, 2022.
[84]Yan X, Tang H, Sun S, et al. After-unet: Axial fusion transformer unet for medical 
image segmentation[C]//Proceedings of the IEEE/CVF winter conference on 
applications of computer vision. 2022: 3971-3981.
[85]Valanarasu J M J, Oza P, Hacihaliloglu I, et al. Medical transformer: Gated axialattention for medical image segmentation[C]//Medical Image Computing and 
Computer Assisted Intervention–MICCAI 2021: 24th International Conference, 
Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24. 
Springer International Publishing, 2021: 36-46.
[86]Zhang C, Wang L, Cheng S, et al. SwinSUNet: Pure transformer network for 
remote sensing image change detection[J]. IEEE Transactions on Geoscience and 
Remote Sensing, 2022, 60: 1-13.
[87]Burt P J, Adelson E H. The Laplacian pyramid as a compact image 
code[M]//Readings in computer vision. Morgan Kaufmann, 1987: 671-679.
[88]Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object 
detection[C]//Proceedings of the IEEE conference on computer vision and pattern 
recognition. 2017: 2117-2125.
[89]Wang W, Xie E, Li X, et al. Pyramid vision transformer: A versatile backbone for 
dense prediction without convolutions[C]//Proceedings of the IEEE/CVF 
international conference on computer vision. 2021: 568-578.
[90]Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using 
shifted windows[C]//Proceedings of the IEEE/CVF international conference on 
computer vision. 2021: 10012-10022.
[91]Wu H, Xiao B, Codella N, et al. Cvt: Introducing convolutions to vision 
transformers[C]//Proceedings of the IEEE/CVF international conference on 
computer vision. 2021: 22-31.
[92]Wang W, Xie E, Li X, et al. Pvt v2: Improved baselines with pyramid vision 
transformer[J]. Computational Visual Media, 2022, 8(3): 415-424.
[93]Xu W, Xu Y, Chang T, et al. Co-scale conv-attentional image 
transformers[C]//Proceedings of the IEEE/CVF International Conference on 
Computer Vision. 2021: 9981-9990.
[94]Xie E, Wang W, Yu Z, et al. SegFormer: Simple and efficient design for semantic 
segmentation with transformers[J]. Advances in Neural Information Processing 
Systems, 2021, 34: 12077-12090.
[95]Chen C F R, Fan Q, Panda R. Crossvit: Cross-attention multi-scale vision 
transformer for image classification[C]//Proceedings of the IEEE/CVF 
international conference on computer vision. 2021: 357-366.
[96]Codella N C F, Gutman D, Celebi M E, et al. Skin lesion analysis toward 
melanoma detection: A challenge at the 2017 international symposium on 
biomedical imaging (isbi), hosted by the international skin imaging collaboration 
(isic)[C]//2018 IEEE 15th international symposium on biomedical imaging (ISBI 
2018). IEEE, 2018: 168-172.
[97]Bernal J, Sánchez F J, Fernández-Esparrach G, et al. WM-DOVA maps for 
accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from 
physicians[J]. Computerized medical imaging and graphics, 2015, 43: 99-111.
[98]Caicedo J C, Goodman A, Karhohs K W, et al. Nucleus segmentation across 
imaging experiments: the 2018 Data Science Bowl[J]. Nature methods, 2019, 
16(12): 1247-1253.
[99]Synapse. Synapse: syn3193805. Retrieved from 
https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
[100]ACDC Challenge. ACDC Challenge. Retrieved from https://www.creatis.insalyon.fr/Challenge/acdc/
[101]Everingham M, Van Gool L, Williams C K I, et al. The pascal visual object 
classes (voc) challenge[J]. International journal of computer vision, 2010, 88: 303-
338.
[102]Hariharan B, Arbeláez P, Bourdev L, et al. Semantic contours from inverse 
detectors[C]//2011 international conference on computer vision. IEEE, 2011: 991-
998.
[103]Cordts M, Omran M, Ramos S, et al. The cityscapes dataset for semantic urban 
scene understanding[C]//Proceedings of the IEEE conference on computer vision 
and pattern recognition. 2016: 3213-3223.
[104]Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: Semantic image 
segmentation with deep convolutional nets, atrous convolution, and fully 
connected crfs[J]. IEEE transactions on pattern analysis and machine intelligence, 
2017, 40(4): 834-848.
[105]Gu Z, Cheng J, Fu H, et al. Ce-net: Context encoder network for 2d medical 
image segmentation[J]. IEEE transactions on medical imaging, 2019, 38(10): 
2281-2292.
[106]Schlemper J, Oktay O, Schaap M, et al. Attention gated networks: Learning to 
leverage salient regions in medical images[J]. Medical image analysis, 2019, 53: 
197-207.
[107]Wang X, Girshick R, Gupta A, et al. Non-local neural networks[C]//Proceedings 
of the IEEE conference on computer vision and pattern recognition. 2018: 7794-
7803.
[108]孙颖,丁卫平,黄嘉爽,等.RCAR-UNet:基于粗糙通道注意力机制的视网膜血
管分割网络 [J]. 计 算 机 研 究 与 发 展 , 2023, 
60(4):15.DOI:10.7544/issn1000-1239.202110735.
[109]Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]//Proceedings of the 
IEEE conference on computer vision and pattern recognition. 2017: 2881-2890.
[110]Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in 
neural information processing systems, 2017, 30.
[111]Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with 
transformers[C]//European conference on computer vision. Cham: Springer 
International Publishing, 2020: 213-229.
[112]田永林, 王雨桐, 王建功, 等. 视觉 Transformer 研究的关键问题: 现
状及展望[J]. 自动化学报, 2022, 48(4): 957-979.
[113]毛琳, 任凤至, 杨大伟, 等. 基于卷积神经网络的全景分割 Transformer 
模型[J]. 软件学报, 2022, 34(7): 3408-3421.
[114]Touvron H, Cord M, Douze M, et al. Training data-efficient image transformers 
& distillation through attention[C]//International conference on machine learning. 
PMLR, 2021: 10347-10357.
[115]Hu H, Zhang Z, Xie Z, et al. Local relation networks for image 
recognition[C]//Proceedings of the IEEE/CVF International Conference on 
Computer Vision. 2019: 3464-3473.
[116]Ramachandran P, Parmar N, Vaswani A, et al. Stand-alone self-attention in vision 
models[J]. Advances in neural information processing systems, 2019, 32.
[117]Tolstikhin I O, Houlsby N, Kolesnikov A, et al. Mlp-mixer: An all-mlp 
architecture for vision[J]. Advances in neural information processing systems, 
2021, 34: 24261-24272.
[118]Xie S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep 
neural networks[C]//Proceedings of the IEEE conference on computer vision and 
pattern recognition. 2017: 1492-1500.
[119]Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoderdecoder architecture for image segmentation[J]. IEEE transactions on pattern 
analysis and machine intelligence, 2017, 39(12): 2481-2495.
[120]Lin G, Milan A, Shen C, et al. Refinenet: Multi-path refinement networks for 
high-resolution semantic segmentation[C]//Proceedings of the IEEE conference on 
computer vision and pattern recognition. 2017: 1925-1934.
[121]Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the 
IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.
[122]Wang F, Jiang M, Qian C, et al. Residual attention network for image 
classification[C]//Proceedings of the IEEE conference on computer vision and 
pattern recognition. 2017: 3156-3164.
[123]Visin F, Ciccone M, Romero A, et al. Reseg: A recurrent neural network-based 
model for semantic segmentation[C]//Proceedings of the IEEE conference on 
computer vision and pattern recognition workshops. 2016: 41-48.
[124]Yang M, Yu K, Zhang C, et al. Denseaspp for semantic segmentation in street 
scenes[C]//Proceedings of the IEEE conference on computer vision and pattern 
recognition. 2018: 3684-3692.
[125]He J, Deng Z, Zhou L, et al. Adaptive pyramid context network for semantic 
segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition. 2019: 7519-7528.
[126]Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for 
semantic image segmentation[J]. arXiv preprint arXiv:1706.05587, 2017.
[127]He K, Zhang X, Ren S, et al. Identity mappings in deep residual 
networks[C]//Computer Vision–ECCV 2016: 14th European Conference, 
Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14. 
Springer International Publishing, 2016: 630-645.
[128]Jha D, Smedsrud P H, Riegler M A, et al. Resunet++: An advanced architecture 
for medical image segmentation[C]//2019 IEEE international symposium on 
multimedia (ISM). IEEE, 2019: 225-2255.
[129]Jha D, Riegler M A, Johansen D, et al. Doubleu-net: A deep convolutional neural 
network for medical image segmentation[C]//2020 IEEE 33rd International 
symposium on computer-based medical systems (CBMS). IEEE, 2020: 558-564.
[130]Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by 
reducing internal covariate shift[C]//International conference on machine learning. 
pmlr, 2015: 448-456.
[131]Zhang Z, Zhang X, Peng C, et al. Exfuse: Enhancing feature fusion for semantic 
segmentation[C]//Proceedings of the European conference on computer vision 
(ECCV). 2018: 269-284.
[132]Guo M H, Liu Z N, Mu T J, et al. Beyond self-attention: External attention using 
two linear layers for visual tasks[J]. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 2022, 45(5): 5436-5447.
[133]Li Z, Yang S, Song G, et al. Hamnet: Conformation-guided molecular 
representation with hamiltonian neural networks[J]. arXiv preprint 
arXiv:2105.03688, 2021.
[134]Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable 
convolution for semantic image segmentation[C]//Proceedings of the European 
conference on computer vision (ECCV). 2018: 801-818.
[135]Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for 
semantic image segmentation[J]. arXiv preprint arXiv:1706.05587, 2017.
[136]Liu C, Chen L C, Schroff F, et al. Auto-deeplab: Hierarchical neural architecture 
search for semantic image segmentation[C]//Proceedings of the IEEE/CVF 
conference on computer vision and pattern recognition. 2019: 82-92.
[137]Li X, Liu Z, Luo P, et al. Not all pixels are equal: Difficulty-aware semantic 
segmentation via deep layer cascade[C]//Proceedings of the IEEE conference on 
computer vision and pattern recognition. 2017: 3193-3202.
[138]Peng C, Zhang X, Yu G, et al. Large kernel matters--improve semantic 
segmentation by global convolutional network[C]//Proceedings of the IEEE 
conference on computer vision and pattern recognition. 2017: 4353-4361.
[139]Maaz M, Shaker A, Cholakkal H, et al. Edgenext: efficiently amalgamated cnntransformer architecture for mobile vision applications[C]//European Conference 
on Computer Vision. Cham: Springer Nature Switzerland, 2022: 3-20.
[140]Yu C, Wang J, Gao C, et al. Context prior for scene segmentation[C]//Proceedings 
of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 
12416-12425.
[141]Takahashi N, Mitsufuji Y. Densely connected multi-dilated convolutional 
networks for dense prediction tasks[C]//Proceedings of the IEEE/CVF conference 
on computer vision and pattern recognition. 2021: 993-1002.
[142]Ke T W, Hwang J J, Liu Z, et al. Adaptive affinity fields for semantic 
segmentation[C]//Proceedings of the European conference on computer vision 
(ECCV). 2018: 587-602.
[143]Yu C, Wang J, Peng C, et al. Learning a discriminative feature network for 
semantic segmentation[C]//Proceedings of the IEEE conference on computer 
vision and pattern recognition. 2018: 1857-1866.
[144]Seichter D, Köhler M, Lewandowski B, et al. Efficient rgb-d semantic 
segmentation for indoor scene analysis[C]//2021 IEEE international conference on 
robotics and automation (ICRA). IEEE, 2021: 13525-13531.
[145]Valada A, Mohan R, Burgard W. Self-supervised model adaptation for 
multimodal semantic segmentation[J]. International Journal of Computer Vision, 
2020, 128(5): 1239-1285.
[146]Ding H, Jiang X, Shuai B, et al. Semantic correlation promoted shape-variant 
context for segmentation[C]//Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition. 2019: 8885-8894.
[147]Ding H, Jiang X, Liu A Q, et al. Boundary-aware feature propagation for scene 
segmentation[C]//Proceedings of the IEEE/CVF International Conference on 
Computer Vision. 2019: 6819-6829.
[148]Zhu Z, Xu M, Bai S, et al. Asymmetric non-local neural networks for semantic 
segmentation[C]//Proceedings of the IEEE/CVF international conference on 
computer vision. 2019: 593-602.
[149]Awan K A, Din I U, Almogren A, et al. NeuroTrust—artificial-neural-networkbased intelligent trust management mechanism for large-scale internet of medical 
things[J]. IEEE Internet of Things Journal, 2020, 8(21): 15672-15682.
[150]Khan M A, Din I U, Kim B S, et al. Visualization of Remote Patient Monitoring 
System Based on Internet of Medical Things[J]. Sustainability, 2023, 15(10): 8120.
[151]Jha D, Smedsrud P H, Riegler M A, et al. Kvasir-seg: A segmented polyp 
dataset[C]//MultiMedia Modeling: 26th International Conference, MMM 2020, 
Daejeon, South Korea, January 5–8, 2020, Proceedings, Part II 26. Springer 
International Publishing, 2020: 451-462.
[152]Zhao F, Xie X. An overview of interactive medical image segmentation[J]. 
Annals of the BMVA, 2013, 2013(7): 1-22.
[153]Lê M, Unkelbach J, Ayache N, et al. Gpssi: Gaussian process for sampling 
segmentations of images[C]//Medical Image Computing and Computer-Assisted 
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 
October 5-9, 2015, Proceedings, Part III 18. Springer International Publishing, 
2015: 38-46.
[154]Bai W, Sinclair M, Tarroni G, et al. Human-level CMR image analysis with deep 
fully convolutional networks[J]. 2017.
[155]Chu Z, Singh S, Sowmya A. Robust Automated Tumour Segmentation Network 
Using 3D Direction-Wise Convolution and Transformer[J]. Journal of Imaging 
Informatics in Medicine, 2024: 1-10.
[156]Roth H R, Lu L, Lay N, et al. Spatial aggregation of holistically-nested 
convolutional neural networks for automated pancreas localization and 
segmentation[J]. Medical image analysis, 2018, 45: 94-107.
[157]Ketkar N, Santana E. Deep learning with Python[M]. Berkeley, CA: Apress, 2017.
pp. 97–111.
[158]Abadi M, Barham P, Chen J, et al. {TensorFlow}: a system for {Large-Scale} 
machine learning[C]//12th USENIX symposium on operating systems design and 
implementation (OSDI 16). 2016: 265-283.
[159]Xu G, Zhang X, He X, et al. Levit-unet: Make faster encoders with transformer 
for medical image segmentation[C]//Chinese Conference on Pattern Recognition 
and Computer Vision (PRCV). Singapore: Springer Nature Singapore, 2023: 42-
53.
[160]Gao G, Yu Y, Yang M, et al. Multi-scale patch based representation feature 
learning for low-resolution face recognition[J]. Applied Soft Computing, 2020, 90: 
106183.
[161]Jha D, Smedsrud P H, Johansen D, et al. A comprehensive study on colorectal 
polyp segmentation with ResUNet++, conditional random field and test-time 
augmentation[J]. IEEE journal of biomedical and health informatics, 2021, 25(6): 
2029-2040.
[162]Wang Y, Yu B, Wang L, et al. 3D conditional generative adversarial networks for 
high-quality PET image estimation at low dose[J]. Neuroimage, 2018, 174: 550-
[163]Fan D P, Ji G P, Zhou T, et al. Pranet: Parallel reverse attention network for polyp
segmentation[C]//International conference on medical image computing and 
computer-assisted intervention. Cham: Springer International Publishing, 2020: 
263-273.
[164]Jha D, Ali S, Tomar N K, et al. Real-time polyp detection, localization and 
segmentation in colonoscopy using deep learning[J]. Ieee Access, 2021, 9: 40496-
40510.
[165]Zhang Y, Liu H, Hu Q. Transfuse: Fusing transformers and cnns for medical 
image segmentation[C]//Medical Image Computing and Computer Assisted 
Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, 
September 27–October 1, 2021, Proceedings, Part I 24. Springer International 
Publishing, 2021: 14-24.
[166]Kim T, Lee H, Kim D. Uacanet: Uncertainty augmented context attention for 
polyp segmentation[C]//Proceedings of the 29th ACM International Conference on 
Multimedia. 2021: 2167-2175.
[167]Wang J, Huang Q, Tang F, et al. Stepwise feature fusion: Local guides 
global[C]//International Conference on Medical Image Computing and ComputerAssisted Intervention. Cham: Springer Nature Switzerland, 2022: 110-120.
[168]Wang J, Wei L, Wang L, et al. Boundary-aware transformers for skin lesion 
segmentation[C]//Medical Image Computing and Computer Assisted Intervention–
MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–
October 1, 2021, Proceedings, Part I 24. Springer International Publishing, 2021: 
206-216.
[169]Liu C, Xie H, Zha Z, et al. Bidirectional attention-recognition model for finegrained object classification[J]. IEEE Transactions on Multimedia, 2019, 22(7): 
1785-1795.
[170]Min S, Yao H, Xie H, et al. Domain-oriented semantic embedding for zero-shot 
learning[J]. IEEE Transactions on Multimedia, 2020, 23: 3919-3930.
[171]Min S, Yao H, Xie H, et al. Multi-objective matrix normalization for fine-grained 
visual recognition[J]. IEEE Transactions on Image Processing, 2020, 29: 4996-
[172]Tian Z, Shen C, Chen H, et al. Fcos: Fully convolutional one-stage object 
detection[C]//Proceedings of the IEEE/CVF international conference on computer 
vision. 2019: 9627-9636.
[173]He K, Gkioxari G, Dollár P, et al. Mask r-cnn[C]//Proceedings of the IEEE 
international conference on computer vision. 2017: 2961-2969.
[174]Han Z, Jian M, Wang G G. ConvUNeXt: An efficient convolution neural network 
for medical image segmentation[J]. Knowledge-Based Systems, 2022, 253: 
109512.
[175]Yuan K, Guo S, Liu Z, et al. Incorporating convolution designs into visual 
transformers[C]//Proceedings of the IEEE/CVF International Conference on 
Computer Vision. 2021: 579-588.
[176]贾熹滨, 郭雄, 王珞, 等. 一种边界增强的医学图像小样本分割网络[J]. 
自动化学报, 2023, 49: 1-14.
[177]He J, Chen J N, Liu S, et al. Transfg: A transformer architecture for fine-grained 
recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 
2022, 36(1): 852-860.
[178]Wang P, Cai Z, Yang H, et al. Omni-detr: Omni-supervised object detection with 
transformers[C]//Proceedings of the IEEE/CVF conference on computer vision and 
pattern recognition. 2022: 9367-9376.
[179]Zhang G, Luo Z, Yu Y, et al. Accelerating DETR convergence via semanticaligned matching[C]//Proceedings of the IEEE/CVF conference on computer 
vision and pattern recognition. 2022: 949-958.
[180]Li F, Zhang H, Liu S, et al. Dn-detr: Accelerate detr training by introducing query 
denoising[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition. 2022: 13619-13627.
[181]Gupta A, Narayan S, Joseph K J, et al. Ow-detr: Open-world detection 
transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition. 2022: 9235-9244.
[182]Zang Y, Li W, Zhou K, et al. Open-vocabulary detr with conditional 
matching[C]//European Conference on Computer Vision. Cham: Springer Nature 
Switzerland, 2022: 106-122.
[183]Strudel R, Garcia R, Laptev I, et al. Segmenter: Transformer for semantic 
segmentation[C]//Proceedings of the IEEE/CVF international conference on 
computer vision. 2021: 7262-7272.
[184]Zheng S, Lu J, Zhao H, et al. Rethinking semantic segmentation from a sequenceto-sequence perspective with transformers[C]//Proceedings of the IEEE/CVF 
conference on computer vision and pattern recognition. 2021: 6881-6890.
[185]Yang Y, Zhang L, Ren L, et al. MMViT-Seg: A lightweight transformer and CNN 
fusion network for COVID-19 segmentation[J]. Computer Methods and Programs 
in Biomedicine, 2023, 230: 107348.
[186]Li X, Pang S, Zhang R, et al. ATTransUNet: An enhanced hybrid transformer 
architecture for ultrasound and histopathology image segmentation[J]. Computers 
in Biology and Medicine, 2023, 152: 106365.
[187]Gao C, Ye H, Cao F, et al. Multiscale fused network with additive channel–spatial 
attention for image segmentation[J]. Knowledge-Based Systems, 2021, 214: 
106754.
[188]Lin F, Liang Z, Wu S, et al. Structtoken: Rethinking semantic segmentation with 
structural prior[J]. IEEE Transactions on Circuits and Systems for Video 
Technology, 2023.
[189]Park K B, Lee J Y. SwinE-Net: Hybrid deep learning approach to novel polyp 
segmentation using convolutional neural network and Swin Transformer[J]. 
Journal of Computational Design and Engineering, 2022, 9(2): 616-632.
[190]Liu Y, Wang H, Chen Z, et al. TransUNet+: Redesigning the skip connection to 
enhance features in medical image segmentation[J]. Knowledge-Based Systems, 
2022, 256: 109859.
[191]Tang P, Yang P, Nie D, et al. Unified medical image segmentation by learning 
from uncertainty in an end-to-end manner[J]. Knowledge-Based Systems, 2022, 
241: 108215.
[192]Qi M, Liu L, Zhuang S, et al. FTC-net: fusion of transformer and CNN features 
for infrared small target detection[J]. IEEE Journal of Selected Topics in Applied 
Earth Observations and Remote Sensing, 2022, 15: 8613-8623.
[193]Fu H, Xu Y, Lin S, et al. Deepvessel: Retinal vessel segmentation via deep 
learning and conditional random field[C]//Medical Image Computing and 
Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, 
Athens, Greece, October 17-21, 2016, Proceedings, Part II 19. Springer 
International Publishing, 2016: 132-139.
[194]Yao C, Hu M, Li Q, et al. Transclaw u-net: claw u-net with transformers for 
medical image segmentation[C]//2022 5th International Conference on 
Information Communication and Signal Processing (ICICSP). IEEE, 2022: 280-
284.
[195]Xie Y, Zhang J, Shen C, et al. Cotr: Efficiently bridging cnn and transformer for 
3d medical image segmentation[C]//Medical Image Computing and Computer 
Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, 
France, September 27–October 1, 2021, Proceedings, Part III 24. Springer 
International Publishing, 2021: 171-180.
[196]Zhou Z, Siddiquee M M R, Tajbakhsh N, et al. Unet++: Redesigning skip 
connections to exploit multiscale features in image segmentation[J]. IEEE 
transactions on medical imaging, 2019, 39(6): 1856-1867.
[197]Wang J, Sun K, Cheng T, et al. Deep high-resolution representation learning for 
visual recognition[J]. IEEE transactions on pattern analysis and machine 
intelligence, 2020, 43(10): 3349-3364.
[198]Srivastava A, Jha D, Chanda S, et al. MSRF-Net: a multi-scale residual fusion 
network for biomedical image segmentation[J]. IEEE Journal of Biomedical and 
Health Informatics, 2021, 26(5): 2252-2263.
[199]Xu G, Zhang X, Fang Y, et al. LeVit-UNet: Make Faster Encoders with 
Transformer for Biomedical Image Segmentation[J]. SSRN, May. 2022.
[200]Xu Q, Ma Z, Na H E, et al. DCSAU-Net: A deeper and more compact splitattention U-Net for medical image segmentation[J]. Computers in Biology and 
Medicine, 2023, 154: 106626.

如果您有论文相关需求,可以通过下面的方式联系我们
点击联系客服
相关临床医学论文论文
QQ 1429724474 电话 18964107217