第一章综述
1.1研究背景
次序统计量目前己得到国内外学者的广泛关注,它在许多领域都有重要的应用,例如统计推断、拟合优度检验、可靠性理论、经济学及运筹学等.若有一组服从相同或不同分布的独立随机变量义1,则用表示第i个次序统计量.许多文章对样本是独立同分布的次序统计量的情形做了研宄,有关研究结果可参阅文献16,8,14, 17]_由于非独立同分布样本的情形较为复杂,所以仅有有限的文章研究此种情形,文献[1,2. 3. 5]对独立不同分布随机变量的次序统计量做了综合性的讨论.
……….
1.2基本概念
在这部分,我们回顾一些随机序的概念及Majorization和相关的序关系.整篇文章中,递增是指单调非减,递减是指单调非增. 在这篇论文中,主要对比例odds模型及基于指数分布的比例odds模型的最大次序统计量和最小次序统计量进行各类随机序比较本论文主要研究了在比例Odds模型的框架下,对其最大次序统计量和最小次序统计量的随机比较问题,包括了似然比序,失效率序,反失效率序和随机序.特别的,对比例odds模型基分布为指数分布的特殊情况进行了深入和细致的研究.
………
第二章最小次序统计量
2.1 引言
在这部分,我们主要对比例odds模型的最小次序统计量进行随机比较,下面介绍本章中需要用到的一些引理.
2.2比例odds模型的随机比较
第二章最小次序统计量......... 4
2.1引言 42.2比例odds模型的随机比较........ 4
2.3基于指数分布的比例odds模型的随机比较........ 9
第三章最大次序统计量 ........12
3.1引言........ 12
3.2比例odds模型的随机比较........ 14
3.3基于指数分布的比例odds模型的随机比较........ 15
第四章总结与展望........ 18
第三章最大次序统计量
3.1引言
在这一章中我们对比例Odds模型的最大次序统计量进行随机比较,并对基分布为指数分布的比例odds模型的最大次序统计量进行了类似的比较.下面先给出一个证明需要用到的引理.
……….
结论
通过本论文的研究,我们对比例odds模型最大次序统计量和最小次序统计量有了相对完整的随机序的比较结果,也对一些不存在的结果做了举例说明.但是,由于基于指数分布的比例odds模型最大次序统计量的失效率和反失效率的形式较为复杂,处理起来有困难,所以关于它的结果仍不完善,这些问题都可以留作以后考虑的方向.
…………
参考文献(略)