基于人工智能计算及CFD仿真之滑动轴承改善设计

论文价格:免费 论文用途:其他 编辑:chenhuixia 点击次数:87
论文字数:160901 论文编号:sb2015010116510311542 日期:2015-01-07 来源:硕博论文网

1  Advances in Hydrodynamic Journal Bearing Research

Hydrodynamic journal bearings (HJBs) are excellent devices able to support rotating shafts under the action of loads with negligible friction and good damping properties. Furthermore  they  are:  passive,  maintenance  free,  cheap  and  easy  to  realize.  HJB  are widely used in ICE’s facilities, such as crankshaft and turbocharger, and when, more in general,  rotating  shafts  have  to  sustain  loads  (hydropower,  power  generation,  naval facilities, process industry, chemical industry).  In  some  applications,  for  their  characteristics,  HJB  constitutes  the  only  available choice for designers but in the majority of the cases the mix with all the properties is the key  of  the  success  of  these  mechanical  components.  Aspects  like:  manufacturability, reliability,  cost  and  working  precision  are  increasing  their  importance  respect  to performances nevertheless they rarely appear in the design procedures.  Modern  studies  about  sliding  bearing  market [1-2] show  that  in  the  near  future  the sliding  speed  will  progressively  increase  while  the  dimension  of  the  machine  will decrease and consequently the load is going to decrease. Furthermore major companies (SKF, NTN SNR, Alstom and Siemens) presented several papers about their clear will to use water as a lubricant (NASA [3] and de Kraker et al. [4]) and polymeric materials for the sleeve coating.   Nevertheless,  the  design,  of  this  mechanical  components,  is  regulated  by  the Raimondi-Boyd charts [5] and by some national regulations (ISO [6] and DIN [7]) which do  not  allow  a  big  margin  of  customization  and  adaption  of  the  product  to  the  real design needing.     The global aim of this work is to solve the multi-objective and multivariable problem of HJB design in a fast and industrially feasible way. The solution flow has also to be flexible  to  accommodate  future  modification,  take  into  account  different  materials, lubricants and geometrical designs.  The local aims are: solve the RE PDE using numerical methods and Artificial Neural Networks, devise a series of objective and implement code for their minimization with Genetic  Algorithms  and  Artificial  Bee  Colony  Algorithm,  design  and  build  a  test  rig machine to collect data in order to validate 3D CFD model developed to predict thermal behaviour of journal bearings and finally demonstrate with two different study case the effectiveness of the method. 
........

2  Theoretical Models for HJB Performance Calculation

2.1 Introduction
Within  this  chapter  the  theoretical  model  used  for  performance  calculations  is presented.  The  theory  adopted  is  an  efficient  revision  of  previous  works  combined together to simplify the performance calculations without loosing accuracy. The core of the  calculation  is  the  use  of  a  smoothing  agent  in  the  finite  difference  scheme  that provides a natural diagonalization of the system matrix with consequent simplification of the iterative method needed to extract the solution. Furthermore this chapter presents results obtained with the proposed method and series of comparisons are made with the major works presented in literature.

2.2 Fundamentals of Fluid Lubrication Theory
A  good  and  complete  explanation  of  how  a  viscous  liquid  film  can  provide lubrication between two moving and loaded surfaces has been given by Reynolds in [65] who  also  derived  an  equation  to  describe  the  behaviour  of  this  lubricating  film.  This equation  substantially  derives  from  the  Navier-Stokes  equations  of  momentum  and continuity or, in a more practical way, it can be found considering the equilibrium of an element of fluid subjected to shear, due to viscous force, and applying to this element the continuity principle.  It  is  clear  that  the  two  surfaces  involved  in  the  problem  have  to  move  with  a sufficient relative speed in order to generate shear forces and their geometrical shape is made to allow film height variation which is necessary for the  generation of pressure gradients.  In addition, it can be assumed that between the  two surfaces there is a continuous film of lubricant and in any case there would be a system providing lubricant supply in any  load  and  speed  condition.  There  are  other  5  important  assumptions  for  the calculations:  Pressure is constant trough the film thickness which is valid since the film is in the range of several micrometres.  Body forces and fluid inertia is neglected. Viscosity and density are constant in the fluid domain. These are just a first step assumption to derive the equation.   Lubricant behaves like a Newtonian fluid that is always valid except for some polymeric oils.

3  CALCULATION  TOOLS:  ARTIFICIAL  NEURAL  NETWORKS, GENETIC ALGORITHMS AND ARTIFICIAL BEE COLONY ............ 41
3.1  Introduction ................................ 41
3.2  Artificial Neural Network ................................. 41
4  FLUID DYNAMIC SIMULATIONS ............ 55
4.1  Introduction ................. 55
4.2  Model ...................... 55
4.3  Geometry .................... 57
4.4  Calculation Grid .................... 59
5  OBJECTIVES OF THE OPTIMIZATION .................. 71
5.1  Introduction ........71
5.2  Objective Formulation ....................... 71
5.3  Optimization Parameters and Procedure ...... 75

7  Results and Discussions

7.1 Introduction
In this chapter the results of the study are collected. In chapter 7.4 the results of the experimental measurements are compared with the relative simulations and calculations. In chapter 7.5 some indications from CFD simulations are given. Then, in chapter 7.6 and chapter 7.7 two examples of solution of the algorithm for two different kind of HJB, one with round inlet and one with square inlet, are presented. In Table 7-1 and Table 7-2 a short resume of the techniques used and their properties is presented. The results appear in the following order:  Experimental results and CFD comparison. CFD results for HJBs optimization. Optimization results of two study cases. Optimization results of a different objective function. 

7.2 Results of the Experiments and CFD Validation
The results of the experiments come out in form of graphs in which the  measured friction torque and temperatures are compared with the calculated and simulated values.  In  Fig. 7-1 temperature  e profile around the bearing is presented. The red dots are 360 one for each degree around the line generated from the intersection of the bearing surface and the symmetry plane. The angular position is counter clockwise direction on y’ axis. The experimental data are four for each angular position (45°, 135°, 225° and 315°) because four tests have been carried to ensure measurement repeatability.  In  Fig.  7-2  the  inlet  temperature  is  25°C  (298  K),  the  maximum  temperature  is 36.1 °C, the distribution is a bell shaped function. The experimental data are in good agreement with the simulation which is carried out for speed 1000 rpm and 1.5 kN. The maximum measure temperature is 37.15 °C and in general the measured data re higher respect  to  the  simulated.  When  the  speed  is  increase  to  2000  rpm  the  temperature  is much higher than the previous case. Is important to point out that according to current work measurements the speed has a big effect on the temperature rise while the load has minor  ability  in  increase  the  heat  produced  by  friction.  This  is  crucial  because demonstrates  again  the  need  of  improve  the  design  methods  used  to  shape  journal bearings because the current trends show that in the future the speeds of machines will progressively increase and their dimensions will decrease.  Also  in  this  case  the  curve  has  a  bell  shape  with  a  “nose”  more  flat  the  previous. Lubricant inlets is still at 25 °C and the maximum temperature is 46.3 °C simulated and 51.4  °C  measured.  The  increased  speed  also  tend  to  translate  the  curve  on  higher angular positions, this means that the fluid is pumped with an increased force but the hydrodynamic pressure of the inlet do not allow the temperature to rise after 230°.  The third graph, Fig. 7-3, shows the path of the temperature when the speed is 4000 rpm, the maximum achievable with our sensor. The maximum measure temperature is 65.0  °C  and  the  maximum  simulated  is  65.25  °C.  The  flat  part  of  the  curve  is  now inclined and barely visible. 
..........

Conclusions

This research has been granted by the 973 - 2013CB632305 (The working Behaviour and  the  Lubricant  Mechanism  of  High-Quality  Synthetic  Lubricants  in  Aero-power Transmission  Systems),  the  work  has  the  aim  to  devise  and  verify  a  design  flow  to optimize hydrodynamic journal bearings.  To accomplish this aim several steps have been made:
1.  An extensive literature review regarding the journal bearing design has been carried out.  The  main  outcomes  of  this  phase  of  the  work  (Phase  1,  Fig.  1-5)  show  that there are still open issues in the field of HJB optimization and their analysis with CFD tools, while there is a clear claim of this solution from numerous producers. 
2.  The  second  phase  of  the  work  had  the  clear  aim  to  reproduce  the  previous  work done in the field of HJB performance calculations improving the diagonalization of the  matrix  generated  with  the  finite  difference  scheme  that  solves  the  Reynolds equation. In this part of the work a software has been implemented to calculate the main performance of HJB and compare the results with previous literature. 
3.  A  series  of  Artificial  Intelligence  tools  have  been  developed  and  modified  to  be used for the solution of tribological problems. In chapter 3.2 the third phase of the work  has  been  carried  out  and  an  ANN  has  been  build  and  trained  in  order  to calculate  HJB  performance.  Furthermore,  two  minimization  techniques,  based  on Genetic Algorithms and Artificial Bee Colony Algorithm have been analysed and used  to  minimize  the  objective  functions  which  are  the  core  of  the  optimization process. 
4.  As  presented  in  chapter  4  and  in  the  appendix  a  CFD  simulation  tool  has  been developed with the use of Matlab, Ansys  Fluent and Ansys Gambit in order to calculate the HJB performance specially taking into account the influence of the inlet geometry. 
5.  The 3D CFD model has been validated with experimental results. To collect real data  a  test  rig  machine  has  been  designed  and  built.  The  test  device  has  the capability  to  measure  temperatures,  friction  torque  and  monitor  the  lubricant temperature  rise  in  real  working  conditions.  The  data  are  used  to  confirm  the prediction of the ANN and the CFD tool. 
6.  Two study cases have been solved to prove the feasibility of the algorithm with two different bearings, with different inlet geometry, lubricant and diameter. The results clearly  show  the  ability  of  the  algorithm  to  simultaneously  reduce  the  friction torque and the mass flow which are trade off objectives. 

............

参考文献(略)


QQ 1429724474 电话 18964107217